
COMPOPT
For Mainframes
For UNIX/OpenVMS
For Windows

COMPOPT for Mainframes

This system command is used to set various compilation options. The options are evaluated when a Natural
programming object is compiled.

option=value

The keywords for the individual options are shown on the Compilation Options screen and are described in the
section Options.

The settings assigned to a compiler option are in effect until you issue the next LOGON command to another library.
At LOGON, the default settings set with the macro NTCMPO and/or profile parameterCMPO will be resumed.

This section covers the following topics:

General Information on Compiler Options
Options

General Information on Compiler Options
You can specify compiler parameters on different levels:

The default settings of the individual parameters are set with the macro NTCMPO in the Natural parameter
module NATPARM.
At session start, you can override the compiler parameters with the profile parameter CMPO.
During an active Natural session, there are two ways to change the compiler parameters with the COMPOPT
command: either directly using command assignment (COMPOPT option=value) or by issuing the COMPOPT
command without parameters which displays the Compilation Options screen. For further in formation, see the
section Options. The settings assigned to a compiler option are in effect until you issue the next LOGON
command to another library. At LOGON, the default settings set with the macroNTCMPO and/or profile
parameter CMPO (see above) will be resumed.
In a Natural programming object (for example: program, subprogram), you can set compiler parameters with
the OPTIONS statement.
Example:

0010 OPTIONS KCHECK=ON
0020 WRITE ’Hello World’
0030 END

The compiler options defined in an OPTIONS statement will only affect the compilation of this programming
object, but do not update settings set with the command COMPOPT.

1Copyright Software AG 2002

COMPOPTCOMPOPT

Options
If you issue the COMPOPT command without parameters, the Compilations Options screen appears.

KCHECK - Keyword Checking
PCHECK - Parameter Checking for CALLNAT Statements
DBSHORT - Interpretation of Database Short Field Names
PSIGNF - Internal Representation of Positive Sign of Packed Numbers
TSENABL - Applicability of TS Profile Parameter
GFID - Generation of Global Format IDs
LOWSRCE - Allow Lower-Case Source
FINDMUN - Detect Inconsistent Comparison Logic in FIND Statements
V22COMP - Compatibility Option for Inconsistent Version 2.2 Syntax

KCHECK - Keyword Checking

ON Programming objects will be checked for Natural statement keywords. Variable names which are reserved
Natural keywords are rejected. The section Keywords and Reserved Words in the Natural Reference
documentation contains a list of all Natural keywords and reserved words, in which the statement keywords
affected by this option are marked.

OFF No keyword check is performed. This is the default.

PCHECK - Parameter Checking for CALLNAT Statements

ON It will be checked if the number of the parameters specified in a CALLNAT statement corresponds with the
number of parameters in the subprogram to be invoked - provided that subprogram already exists (if the
subprogram does not exist, this option has no effect).

OFF No parameter check is performed. This is the default.

DBSHORT - Interpretation of Database Short Field Names

ON Database field names in programming objects are considered long names (as defined in the corresponding
DDM) - except 2-character field names, which are considered short names (as used by the underlying
database system). This is the default.

Note: Even if DBSHORT=ON, the use of a short database field is not allowed in the following cases:

if a DEFINE DATA LOCAL is specified in a program,
in Natural for non-mainframe platforms,
when Natural Security is installed

OFF All database field names in programming objects are considered long names, regardless of their length. This
avoids possible misinterpretations of database field names in programs.
You can use this setting to disallow the use of short names in general.

Background Information

When the Natural compiler resolves a database field (that is, a field defined in a DDM), the length of the field name
is used to decide if the identifier represents a "db-short-name" or a "db-long-name". When the field name length is 2
characters a "db-short-name" reference is assumed, whereas all other identifiers are treated as "db-long-names".

Copyright Software AG 20022

COMPOPTOptions

According to the general Natural rules, you may not use "db-short-names" in your program, if a DEFINE DATA
LOCAL was specified; neither to create the field list in the view definition nor in a search expressions of a FIND
statement or to specify a read sequence control field in a READ or HISTOGRAM statement. All these restrictions
are controlled by the Natural compiler, regardless if option DBSHORT is ON or OFF.

The purpose of DBSHORT is to change the compiler’s behavior as follows:

if set to ON , everything works as described above.

if set to OFF, every database field identifier is regarded as a "db-long-name", no matter of how many characters it
consist. In other words, only the long name column in the DDM (captioned as "Name" in a DDM
display) is considered to locate the referenced field and the DDM short names (captioned as "DB" in
a DDM display) are completely disregarded.

The main reason for using DBSHORT=ON is when you have long names defined in a DDM with only 2 byte
identifier length. At DDM generation, you may only create 2 byte long-names if the underlying database (you access
with this DDM) is SQL (e.g. DB2). For all other database types, the attempt to define a long-field with 2 byte name
length results in error SYSDDM4219 (SYSDDM utility).

However, when DBSHORT=OFF is set, the compiler does not check db-short-names in a DDM. This leads to syntax
error NAT0981 if a db-short-field is used in a program.

PSIGNF - Internal Representation of Positive Sign of Packed Numbers

ON The positive sign of a packed number is represented internally as H’F’. This is the default.

OFF The positive sign of a packed number is represented internally as H’C’.

TSENABL - Applicability of TS Profile Parameter

This option determines whether the profile parameter TS (translate output for locations with non-standard lower-case
usage) is to apply only to Natural system libraries (that is, libraries whose names begin with "SYS", except
SYSTEM) or to all user libraries as well.

ON The TS parameter applies to all libraries.

OFF The TS parameter only applies to Natural system libraries. This is the default.

The setting of the TSENABL option is currently not honored when a Natural
object is executed. This will be corrected in the next major relase of Natural.

GFID - Generation of Global Format IDs

This option allows you to control Natural’s internal generation of global format IDs so as to influence Adabas’s
performance concerning the re-usability of format buffer translations.

ON Global format IDs are generated for all views. This is the default.

VID Global format IDs are generated only for views in local/global data areas, but not for views defined within
programs.

OFF No global format IDs are generated.

3Copyright Software AG 2002

PSIGNF - Internal Representation of Positive Sign of Packed NumbersCOMPOPT

Rules for generating GLOBAL FORMAT-IDs in Natural Version 3.1.

Note: STOD is the return value of the store clock machine instruction (STCK).

For Natural nucleus internal system-file calls

GFID=abccddee

where equals

a x’F9’

b x’22’ or x’21’ depending on DB statement

cc physical database number (2 bytes)

dd physical file number (2 bytes)

ee number created by runtime (2 bytes)

For user programs or Natural utilities

a) GFID=abbbbbbc for file number equal to or less than 255 and Adabas Version lower than 6.2 (see NTDB macro).

where equals

a x’F8’ or x’F7’ or x’F6’

bbbbbb byte 1-6 of STOD value

c physical file number

b) GFID=axbbbbbc for file number greater than 255 and Adabas Version lower than 6.2.

where equals

a x’F8’ or x’F7’ or x’F6’

x physical file number - high order byte

bbbbb byte 2-6 of STOD value

c physical file number - low order byte

c) GFID=abbbbbb for Adabas Version 6.2 or higher.

where equals

a x’F8’ or x’F7’ or x’F6’
where:
F6=UPDATE SAME
F7=HISTOGRAM
F8=all others

bbbbbbb byte 1-7 of STOD value

For details on global format IDs, see the Adabas documentation.

Copyright Software AG 20024

COMPOPTGFID - Generation of Global Format IDs

LOWSRCE - Allow Lower-Case Source

This option supports the use of lower or mixed-case program sources on mainframe platforms. It facilitates the
transfer of programs written in mixed/lower-case characters from other platforms to a mainframe environment.

ON Allows any kind of lower/upper-case characters in the program source.

OFF Allows upper-case mode only. This requires keywords, variable names and identifier to be defined in upper
case. This is the default.

When you use lower-case characters with LOWSRCE=ON consider the following:

The syntax rules for variable names allow lower-case characters in subsequent positions. Therefore, you can
define two variables, one written with lower-case characters and the other with upper-case characters.
Example:

DEFINE DATA LOCAL
1 #Vari (A20)
1 #VARI (A20)

With LOWSRCE=OFF, these variables are treated as different variables.

With LOWSRCE=ON, the compiler is not case sensitive and does not make a difference between
lower/upper-case characters. This will lead to a syntax error because a duplicate definition of a variable is not
allowed.
Using the session parameter EM (Edit Mask) in an I/O statement or in a MOVE EDITED statement, there are
characters which influence the layout of the data setting assigned to a variable (EM control characters), and
characters which insert text fragments into the data setting. Example:

#VARI :=’1234567890’
 WRITE #VARI (EM=XXXXXxxXXXXX)

With LOWSRCE=OFF, the output is 12345xx67890, because for alpha format variables only upper-case X, H
and circumflex accent (ˆ) sign can be used.

With LOWSRCE=ON, the output is 1234567890, because an x character is treated like an upper-case X and,
therefore, interpreted as an EM control characters for that field format. To avoid this problem, enclose constant
text fragments in apostrophes (’). Example:

WRITE #VARI(EM=XXXXX’xx’XXXXX)

The text fragment is not considered an EM control character, regardless of the LOWSRCE settings.

Since all variable names are converted to upper-case characters with LOWSRCE=ON, the display of variable
names in I/O statements (INPUT, WRITE or DISPLAY) differs.
Example:

MOVE ’ABC’ to #Vari
 DISPLAY #Vari

With LOWSRCE=OFF, the output is:

 #Vari

 ABC

5Copyright Software AG 2002

LOWSRCE - Allow Lower-Case SourceCOMPOPT

With LOWSRCE=ON, the output is:

 #VARI

 ABC

FINDMUN - Detect Inconsistent Comparison Logic in FIND Statements

With Natural Version 2.3, the comparison logic for multiple-setting fields in the WITH clause of the FIND statement
has been changed. This means that when Version 2.2 programs containing certain forms of FIND statements are
compiled under Version 3.1, they will return different results. This option can be used to search for FIND statements
whose WITH clauses use multiple-setting fields in a way that is no longer consistent with the enhanced Version 3.1
comparison logic.

ON Error NAT0998 will be returned for every FIND statement of such form detected at compilation.

OFF No search for such FIND statements will be performed. This is the default.

The comparison logic for multiple-value fields in the WITH clause of the FIND statement has been changed with
Natural version 2.3 so as to be in line with the comparison logic in other statements (e.g. IF).

Four different forms of the FIND statement can be distinguished (the field MU in the following examples is assumed
to be a multiple-value field):

1.

FIND XYZ-VIEW WITH MU = ’A’

With Version 2.2 and above, this statement returns records in which at least one occurrence of MU has the
value "A".

2.

FIND XYZ-VIEW WITH MU NOT EQUAL ’A’

With Version 2.2, this statement returns records in which no occurrence of MU has the value "A" (same as 4.).
With Version 2.3 and above, this statement returns records in which at least one occurrence of MU does not
have the value "A".

3.

FIND XYZ-VIEW WITH NOT MU NOT EQUAL ’A’

With Version 2.2, this statement returns records in which at least one occurrence of MU has the value "A"
(same as 1.).
With Version 2.3 and above, this statement returns records in which every occurrence of MU has the value
"A".

4.

FIND XYZ-VIEW WITH NOT MU = ’A’

With Version 2.2 and above, this statement returns records in which no occurrence of MU has the value "A".
This means that if you newly compile under Version 2.3 existing Version 2.2 programs containing FIND
statements of the forms 2. and 3., they will return different results.

If you specify FINDMUN=ON, error NAT0998 will be returned for every FIND statement of form 2. or 3. detected
at compilation.

Copyright Software AG 20026

COMPOPTFINDMUN - Detect Inconsistent Comparison Logic in FIND Statements

Should you in these cases wish to continue to get the same results as with Version 2.2, you have to change the
statements as follows:

In Form 2:

FIND XYZ-VIEW WITH MU NOT EQUAL ’A’

into

FIND XYZ-VIEW WITH NOT MU = ’A’

In Form 3:

FIND XYZ-VIEW WITH NOT MU NOT EQUAL ’A’

into

FIND XYZ-VIEW WITH MU = ’A’

V22COMP - Compatibility Option for Inconsistent Version 2.2 Syntax

This option will be available only for a limited period of time to allow a smooth
transition. It will be removed again with a subsequent release of Natural.

The following inconsistent syntax constructions that were not intercepted by Version 2.2 lead to a syntax error with
Version with Version 2.3 and above:

DEFINE DATA: inconsistent number of decimal digits in constant setting,
DEFINE DATA: redefinition of database array with variable index range,
DEFINE WINDOW: specified window size smaller than minimum.

To allow you a smooth transition from Version 2.2, you can use this option.

ON The above syntax constructions will not lead to a syntax error. Thus you are able to compile your existing
programs with the current Natural version until you have adjusted them to the new syntax requirements.

OFF The above syntax constructions will lead to a syntax error. This is the default.

Below, the above inconsistencies are explained in detail.

Decimal Digits of Constant Values

If the constant value specified after CONSTANT or INIT has more digits after the decimal point than the
corresponding field, this does not lead to an error with Version 2.2. Now, such inconsistency leads to error NAT0094
at compilation.

Example:

DEFINE DATA LOCAL1 #FIELD (N2) INIT <12.25> /* no longer possibleEND-DEFINE

Redefinition of Database Arrays

To prevent referencing errors, it is no longer possible to specify a variable index range in the redefinition of a
periodic-group field or multiple-value field.

Example:

7Copyright Software AG 2002

V22COMP - Compatibility Option for Inconsistent Version 2.2 SyntaxCOMPOPT

DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES
2 SALARY (I:I+2)
2 REDEFINE SALARY
3 MYSALARY (P9/I:I+2) /* no longer possible
END-DEFINE

The above redefinition has to be changed to:

3 MYSALARY (P9/1:3)

DEFINE WINDOW

The minimum possible size of a window is 2 lines by 10 columns without frame, and 4 lines by 12 columns with
frame. The size of a window can be specified in the SIZE clause of the DEFINE WINDOW statement.

With Version 2.2, a window size smaller than the minimum could be specified: at runtime, the size of the window
was then automatically set to the minimum possible number of lines and/or columns. Now, the specification of too
small a window size leads to error NAT1167 at compilation.

Example:

DEFINE WINDOW XYZ
SIZE 4 * 8 FRAMED OFF /* Version 2.2: Size set to 4 * 10 at runtime.
 /* Version 2.3 and above: Syntax error.

Copyright Software AG 20028

COMPOPTV22COMP - Compatibility Option for Inconsistent Version 2.2 Syntax

COMPOPT for UNIX/OpenVMS

This command is used to set various compilation options. The options are evaluated when a Natural programming
object is compiled.

option=value

When you issue the COMPOPT command without parameters, a screen is displayed on which you can set the
options described below. Alternatively, you can set the options directly with the COMPOPT command using the
keywords shown both in brackets below and on the COMPTOPT screen.

Example:

COMPOPT DBSHORT=ON

Note:
The default settings of the individual options are set with the respective profile parameters in the Natural parameter
module.

Interpretation of Database Short Field Names (DBSHORT):

ON Database field names in programming objects are considered long names (as defined in the corresponding
DDM) - except 2-character field names, which are considered short names (as used by the underlying
database system).

OFF All database field names in programming objects are considered long names, regardless of their length. This
avoids possible misinterpretations of database field names in programs.

Generation of Global Format IDs (GFID):

This option allows you to control Natural’s internal generation of global format IDs so as to influence Adabas’s
performance concerning the re-usability of format buffer translations.

ON Global format IDs are generated for all views.

VID Global format IDs are generated only for views in local/global data areas, but not for views defined within
programs.

OFF No global format IDs are generated.

For details on global format IDs, see the Adabas documentation.

Allow Old Version 2.2 Syntax (V22COMP):

This option will be available only for a limited period of time to allow a smooth
transition to Version 3.1 syntax and above. It will be removed again with a
subsequent release of Natural.

The following inconsistent syntax construction not intercepted by Version 2.2 lead to a syntax error with Version 3.1
and above:

9Copyright Software AG 2002

COMPOPT for UNIX/OpenVMSCOMPOPT

DEFINE DATA: inconsistent number of decimal digits in constant setting.

To allow you a smooth transition from Version 2.2 to Version 3.1, you can use this option.

ON The above syntax constructions will not lead to a syntax error. Thus you are able to compile your existing
programs under Version 3.1 until you have adjusted them to the Version 3.1 requirements.

OFF The above syntax constructions will lead to a syntax error.

For details on the above inconsistencies, please refer to your Natural for UNIX/OpenVMS Version 4.1.2 Release
Notes.

Copyright Software AG 200210

COMPOPTCOMPOPT for UNIX/OpenVMS

COMPOPT for Windows

This command is used to set various compilation options. The options are evaluated when a Natural programming
object is compiled.

When you issue only the COMPOPT command itself, a screen is displayed where you can set the options described
below.

Note:
The default settings of the individual options are set with the respective profile parameters in the Natural parameter
module.
When you log on to another library, the COMPOPT options will be reset to their default settings.

Interpretation of Database Short Field Names - DBSHORT:

ON
Database field names in programming objects are considered long names (as defined in the corresponding
DDM) - except 2-character field names, which are considered short names (as used by the underlying
database system).

OFF
All database field names in programming objects are considered long names, regardless of their length. This
avoids possible misinterpretations of database field names in programs.

Compatibility Option for Inconsistent Version 2.2 Syntax - V22COMP:

This option will be available for a limited period of time only to allow a smooth
transition from Version 2.2. to Version 3.1 or above. It will be removed again
with a subsequent release of Natural.

The following inconsistent syntax construction not intercepted by Version 2.2 leads to a syntax error with Version
3.1 or above.

DEFINE DATA: inconsistent number of decimal digits in format definition and constant setting.

ON
The above syntax constructions will not lead to a syntax error. Thus you are able to compile your existing
programs under version 3.1 or above until you have adjusted them to the version requirements.

OFF The above syntax constructions will lead to a syntax error.

Generation of Global Format IDs - GFID:

This option enables you to control Natural’s internal generation of global format IDs so as to influence Adabas’s
performance concerning the re-usability of format buffer translations.

ON Global format IDs are generated for all views.

VID
Global format IDs are generated only for views in local/global data areas, but not for views defined within
programs.

OFF No global format IDs are generated.

11Copyright Software AG 2002

COMPOPT for WindowsCOMPOPT

For details on global format IDs, see the Adabas documentation.

option=value

Instead of changing an option on the screen, you can also specify it directly with the COMPOPT command. The
keywords for the individual options are shown in parentheses (on the COMPOPT screen and in the above
description).

Example:

COMPOPT DBSHORT=ON

Copyright Software AG 200212

COMPOPTGeneration of Global Format IDs - GFID:

	COMPOPT
	COMPOPT for Mainframes
	
	option=value

	General Information on Compiler Options
	Options
	KCHECK - Keyword Checking
	PCHECK - Parameter Checking for CALLNAT Statements
	DBSHORT - Interpretation of Database Short Field Names
	Background Information

	PSIGNF - Internal Representation of Positive Sign of Packed Numbers
	TSENABL - Applicability of TS Profile Parameter
	GFID - Generation of Global Format IDs
	Rules for generating GLOBAL FORMAT-IDs in Natural Version 3.1.

	LOWSRCE - Allow Lower-Case Source
	FINDMUN - Detect Inconsistent Comparison Logic in FIND Statements
	V22COMP - Compatibility Option for Inconsistent Version 2.2 Syntax
	Decimal Digits of Constant Values
	Redefinition of Database Arrays
	DEFINE WINDOW

	COMPOPT for UNIX/OpenVMS
	
	option=value
	Interpretation of Database Short Field Names †DBSHORT‡:
	Generation of Global Format IDs †GFID‡:
	Allow Old Version 2.2 Syntax †V22COMP‡:

	COMPOPT for Windows
	Interpretation of Database Short Field Names - DBSHORT:
	Compatibility Option for Inconsistent Version 2.2 Syntax - V22COMP:
	Generation of Global Format IDs - GFID:
	option=value

